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Polyclonal antibodies have a century-old history of being effective 
against some viruses and, recently, monoclonal antibodies (mAbs) 
have also shown some clinical success. Human mAbs to the severe 
acute respiratory syndrome (SARS) coronavirus spike 
glycoprotein have been developed by several research groups at an 
amazing pace. These antibodies potently neutralize infectious 
virus in tissue cultures and animal models, and, alone or in 
combination with vaccines and other drugs, may have potential for 
the prevention and treatment of SARS.  
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Introduction 
Serum-derived antibody preparations from humans or 
animals (mostly rabbits and horses) have been used for 
prophylaxis and therapy of viral diseases since the late 1800s 
[1•], although mostly for prophylaxis, either prior to an 
anticipated exposure or following exposure to an infectious 
agent [2-4]. Antibody products licensed in the US for the 
prevention or treatment of viral diseases include human 
immunoglobulin (Ig) for use against hepatitis A and 
measles, and virus-specific polyclonal human Ig against 
cytomegalovirus, hepatitis B, rabies, respiratory syncytial 
virus (RSV), vaccinia and varicella-zoster. Polyclonal Ig has 
also been used with varying success for diseases caused by 
other human viruses, including parvovirus B19, Lassa virus, 
West Nile virus, some enteroviruses, herpes simplex virus, 
Crimean-Congo hemorrhagic fever virus, Junin virus and 
HIV-1. Patients infected with the coronavirus (CoV), which 
causes severe acute respiratory syndrome (SARS), were 
treated with convalescent patient plasma containing 
polyclonal antibodies [5•,6•]. Improvements of the antibody 
preparations were suggested [7], and batches of virus-
inactivated hyperimmune globulins containing 5- to 6-fold 
higher titers of SARS-CoV (SCV)-specific antibodies than 
convalescent plasma were produced [8]. 

Although serum polyclonal antibody preparations have 
been clinically effective in many cases, problems related to 
toxicity, including a risk for allergic reactions, lot-to-lot 
variation and uncertain dosing, have limited their use [9]. 
Monoclonal antibodies (mAbs), including chimeric animal-
human, humanized and fully human mAbs (hmAbs), have 
lower or absent immunogenicity, toxicity and lot-to-lot 
variation. The molecular mechanisms of the therapeutic 
efficacy of such antibodies are easier to dissect and can be 
engineered to further improve their therapeutic properties. 
One such antibody, the humanized mAb palivizumab, was 
licensed by the US FDA for the prevention of RSV infections, 
but remains the only one approved for clinical use against 
an infectious disease. At an amazing pace of research, 
several research groups have recently developed human 
mAbs to the SCV spike (S) glycoprotein, which neutralize 
the virus and have potential for the therapy and prophylaxis 
of SARS. This review will mostly describe these SCV-
neutralizing antibodies (nAbs) and analyze their potential as 
therapeutic agents. 

Neutralizing antibodies elicited by SCV 
infection or immunization 
Infections by many viruses, including CoVs, elicit potent 
nAbs that can affect the course of infection and help clear 
the virus; nAbs can also protect an uninfected host exposed 
to the virus. SCV is no exception and nAbs have been 
detected in SCV-infected patients [10-14,15•], mice [16], 
hamsters [17] and monkeys [18]. These antibodies also 
protected uninfected animals from SCV infection, for 
example, passive transfer of immune serum to naive mice 
prevented virus replication in the lower respiratory tract 
following intranasal challenge [16]. nAbs from serum targeted 
the S protein [15•], including epitopes containing portions of 
the receptor-binding domain (RBD) on S1 [19], conserved 
fragments from S2 (eg, Leu803 to Ala828 and Pro1061 to Ser1093) [20], 
and a limited number of fragments from other regions of S [14]. 
Their epitopes appear to be both conformational and linear, one 
study found an association between linear epitopes and S 
protein C-terminal regions, and conformational epitopes with 
the S protein N-terminal domain [21].  
 
Immunization with various antigens also induced nAbs in 
mice [19,22-29], hamsters [30], rabbits [27,31,32], ferrets [33], 
pigs [34] and monkeys [35,36]. The S glycoprotein, which 
alone can mediate entry of the SCV [15•,37•], has been 
mostly used as an immunogen. nAbs can be elicited with 
approximately equal efficacy by the soluble ectodomain and 
the full-length membrane-associated S protein using DNA 
immunization of mice without boosting with protein  
[X Xiao, A Biragyn, DS Dimitrov, unpublished data]. 
 
Mice were immunized for the production of neutralizing 
murine mAbs (nmAbs) [38,39]. Two of the S-specific mAbs 
(F26G18 and F26G19) demonstrated the highest in vitro 
neutralizing potency (in the sub-nanomolar range), with the 
nmAbs targeting predominantly conformational epitopes 
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[38]. Antibodies from convalescent SARS patients, but not 
normal human serum, have specifically competed with 
binding of these mAbs to whole SCV, indicating the 
existence of antibodies in infected humans targeting the 
same or overlapping epitopes as the mouse nmAbs. The 
most potent murine nmAbs, for example, F26G18, may have 
potential for the prevention and treatment of SARS, 
especially after their humanization to avoid possible 
immunogenicity effects. 

Neutralizing hmAbs generated by Epstein-
Barr virus transformed B-cells from a 
convalescent patient 
hmAbs represent a promising alternative to hyperimmune 
sera and humanized mAbs. Such antibodies can be 
produced by Epstein-Barr virus (EBV)-immortalized B-cells, 
or selected from human antibody libraries, and hybridomas 
from immunized transgenic mice carrying human Ig genes. 
Recently, an improved method for EBV transformation of 
human B-cells based on a CpG oligonucleotide (CpG-2006; 
Coley Pharmaceutical Group Inc) that increases the B-cell 
immortalization efficiency from 1 to 2%, to 30 to 100% was 
developed and used for selection of hmAbs specific for SCV 
proteins [40••]. IgG+ B-cells were obtained from a 
convalescent patient whose serum contained SCV-specific 
antibodies (IgG1), which were detected by enzyme-linked 
immunosorbent assay (ELISA) of viral protein sodium 
dodecyl sulfate extract and staining of baby hamster kidney 
(BHK) cells transfected with the SCV S-encoding DNA. 
nAbs measured by an in vitro neutralization assay of SCV 
infection persisted for more than 12 months in the serum of 
this patient, although their titer began to decline after 8 
months (from 1/128 to 1/64); interestingly, the S-specific 
antibody titer began to decline 2 months following the start 
of the infection. 
 
Screening the culture supernatants of B-cell clones using an 
in vitro neutralization assay or by staining S transfectants 
resulted in the identification of 35 hmAbs capable of 
completely neutralizing SCV infection in vitro at 
concentrations ranging from 1 to 850 ng/ml. Some of these 
antibodies bound with high affinity to cell surface-
associated S glycoprotein and exhibited neutralization titer 
proportional to the level of staining, while others stained S 
transfectant cells poorly but showed high neutralizing 
activity. One of these antibodies (S3.1) was approximately 
500-fold more effective in neutralization than convalescent 
serum; it stained the S glycoprotein on the viral spikes, as 
measured by immunoelectron microscopy. In a mouse 
model of SCV infection, 200 and 800 µg of this antibody 
prevented viral replication in the lower respiratory tract, 
and reduced it in the upper respiratory tract at the highest 
concentration (800 µg). Unfortunately, data for the in vivo 
neutralizing activity of other neutralizing hmAbs 
(nhmAbs) selected in this study [40••], including the most 
potent antibody (S215.13), which has a neutralizing 
concentration (1 ng/ml) 300-fold lower than that of S3.1, 
have not been reported. The high neutralizing activities of 
these hmAbs in IgG1 format indicate possibilities for their 
use alone or in combination for the prophylaxis and 
treatment of SARS. 

nhmAbs selected from naive phage-displayed 
antibody libraries 
Phage-display technology has been increasingly used to 
produce high-affinity hmAbs from both naive and immune 
libraries. An advantage of using a naive library is that B-
lymphocytes from an infected or immunized host are not 
required. Recently, two human, non-immune, single-chain, 
variable region fragment (scFv) libraries containing a total of 
2.7 x 1010 members were developed from the B-cells of 57 
unimmunized donors, and used for selection of antibodies 
against a purified S fragment containing residues 12 to 672 
[41•]. Eight unique scFvs were identified, one of which (80R) 
exhibited neutralizing activity in vitro. To increase avidity 
and half-life in vivo, this scFv was converted to IgG1 and 
extensively characterized. The avidity, measured by surface 
plasmon resonance, increased by approximately 20-fold  
(Kd = 1.6 nM), which correlated with approximately the 
same fold increase in its in vitro neutralizing activity. IgG1 
80R can neutralize 50% of the virus in a microneutralization 
assay at a concentration of 0.37 nM. It also blocked 
formation of syncytia, which could contribute to the spread 
of the virus in vivo, although at a significantly higher 
concentration (25 nM). Its epitope overlaps the binding site 
of the SCV receptor angiotensin-converting enzyme  
(ACE)-2, suggesting a possible mechanism of neutralization 
by preventing the virus attaching to its receptor [41•]. 
Further studies, including testing its neutralizing activity in 
animals, are required to determine the potential clinical 
utility of this antibody. 
 
Three nhmAbs were also generated by screening a large 
naive antibody library [42••,43•]. All antibodies bound a 
recombinant S1 fragment comprising amino-acid residues 
318 to 510, which includes the RBD [43•]. The most potent of 
these nhmAbs, IgG1 CR3014, required the residue N479 for 
binding [43•]. This antibody bound to S expressed on the 
surface of HEK293T cells and exhibited 50% neutralizing 
activity at approximately 1 µg/ml in vitro [42••,43•]. More 
importantly, this antibody showed neutralizing activity in 
ferrets, measured by two sets of experiments [42••]. In the 
first set of experiments, ferrets were inoculated either with 
virus at two doses, low (103 TCID50) and high (104 TCID50), or 
with virus pre-incubated with the antibody at 0.13 mg/ml 
for the low dose and 1.3 mg/ml for the high dose. Animals 
exposed to the virus-antibody mixture had almost 
undetectable SCV in the lung, showed no lung lesions on 
days 4 or 7, and did not shed virus in their throats, unlike 
control animals treated with irrelevant antibody. In a second 
set of experiments, 10 mg/kg of antibody was administered 
24 h before challenge with virus and reached 65 to 84 µg/ml 
of serum concentration in three of the animals (< 5 µg/ml in 
the fourth animal). In the three ferrets with high antibody 
concentration, virus shedding in the throat was completely 
abolished, while in the fourth animal it was comparable to 
that of the control group. The CR3014-treated animals had 
3.3-log lower mean virus titer than the controls, and were 
completely protected from macroscopic lung pathology. The 
antibody dose used (10 mg/kg) was less than the dose  
(15 mg/kg) used for prevention of RSV infections in infants, 
which is administered once a month. These results suggest a 
potential use of CR3014 for prophylaxis of SCV infections in 
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humans if it can reduce the virus replication to the same 
extent as in ferrets.  
 
We have generated a panel of scFvs from phage libraries 
[MY Zhang, V Choudhry, X Xiao, DS Dimitrov, unpublished 
data]. Two of the scFvs, designated m301 and m302, 
exhibited high-affinity binding to purified S, as measured by 
surface plasmon resonance. The Kd for m301 was 16.4 nM 
(kon = 4.2 x 104 M-1s-1, koff = 6.9 x 10-4 s-1) and for m302 was  
60.8 nM (kon = 9.7 x 103 M-1s-1, koff = 5.9 x 10-4 s-1). In an ELISA, 
these antibodies competed with ACE-2 for binding to the 
spike protein. They were converted to an IgG1 format and 
their potency in neutralizing SCV is being evaluated.  

nhmAbs obtained from immunization of 
transgenic mice with human Ig genes 
Recently, two hmAbs (201 and 68; Medarex Inc/University 
of Massachusetts Medical School) were derived from 
transgenic mice with human Ig genes and evaluated in a 
murine model of SCV infection [44•]. One of these 
antibodies (201) bound within the RBD of the S protein at 
amino-acid residues 490 to 510, and the other (68) bound to a 
region including residues 130 to 150. Mice that received  
40 mg/kg of these antibodies prior to challenge with the 
SCV were completely protected from virus replication in the 
lungs, and doses as low as 1.6 mg/kg offered significant 
protection. These antibodies have potential as therapeutics 
and research tools, and further studies are planned to 
evaluate the nhmAb 201 for potential clinical use [44•]. 

Anti-ACE-2 nhmAbs, S protein fragments and 
soluble ACE-2 as potential therapeutics 
nAbs directed to S inhibit SCV entry, either by interfering 
with S RBD-receptor interactions [41•] or by other 
mechanisms that remain to be elucidated. Such mechanisms 
could include steric hindrance that indirectly prevents virus 
attachment to receptors and binding to entry intermediates. 
Other mechanisms that could operate in vivo, which will not 
be discussed here due to lack of data, are related to the 
antibody biological effector functions conferred by the 
antibody Fc, for example, antibody-dependent cellular 
cytotoxicity. 
 
S-ACE2 interactions can be blocked by antibodies targeting 
either S or ACE-2. Indeed, antibodies to ACE-2, but not an 
anti-ACE-1 antibody, blocked viral replication on Vero E6 
cells  [X Xiao, DS Dimitrov, unpublished data] [45•]. As the 
receptor is a host molecule that does not mutate, the use of 
antibodies targeting receptor molecules may prevent the 
generation of resistant mutants. However, it appears that for 
SCV infection, which is an acute infection, generation of 
resistant mutants may not be a significant problem. In 
addition, such anti-ACE-2 antibodies could deplete cells 
expressing ACE-2. Studies in animal models are required to 
investigate whether SCV infection in the presence of 
nhmAbs will lead to generation of neutralization escape 
mutants and whether anti-ACE-2 nhmAbs have deleterious 
effects on the host.  
 
S-ACE-2 interactions can also be blocked by fragments 
containing the S RBD and by soluble receptor molecules. 

Fragments containing the N-terminal amino-acid residues 17 
to 537 and 272 to 537, but not 17 to 276 bound specifically to 
Vero E6 cells and purified soluble receptor molecules. 
Together with data from binding inhibition by antibodies 
developed against peptides from S, these findings suggested 
that the RBD is located between amino-acid residues 303 
and 537 [46•]. Two other research groups obtained similar 
results and found that independently folded fragments as 
short as 193 residues can specifically bind receptor 
molecules [47,48]. The 193-residue fragment blocked  
S protein-mediated SCV infection with an IC50 of less than  
10 nM, whereas the IC50 of the S1 domain was approximately 
50 nM [47]. Similar results were found for other fragments 
containing the RBD. S fragments containing residues 272 to 
537 and 17 to 537 also displayed inhibitory effects  
on S-mediated cell fusion, albeit with lower activity  
(IC50 > 100 nM) [X Xiao, DS Dimitrov, unpublished data]. The  
S fragments showed higher neutralizing activity when fused 
to an Fc fragment. It is possible that Fc fused to S fragments 
helps to maintain the conformation of the RBD. Another 
possibility is that the dimerization conferred by the Fc could 
enhance binding of the S fragments to the ACE-2 molecules. 
Soluble receptor molecules have been tested as inhibitors for 
HIV-1 infection and it was suggested that such an approach 
could also be used for inhibition of SCV infections [45•,49•]; 
indeed, soluble ACE-2 (sACE-2) blocked viral replication in 
Vero E6 cells [45•]. Of note is that the sACE-2 form used was 
a fusion protein in which sACE-2 was joined to an Fc 
antibody that would confer long half-life in vivo.  
 
Fragments from regions of the S protein other than the RBD 
can also inhibit SCV entry. Computer analysis suggested the 
existence of two heptad repeats; peptides from the N- and C-
terminal regions of S2 (NP and CP, respectively) can form 
stable complexes (six-helix bundle structures), indicating 
that, as for other class I fusion proteins, such structures are 
an important intermediate in the fusion process [50-53]. The 
formation of these structures could be disrupted by NP and 
CP. Indeed, several recent studies demonstrated that SCV 
infection can be inhibited by CP, although in most cases the 
inhibitory peptide concentrations were in the micromolar 
range [50-53], except for one isolate, which appears to be 
inhibited at nanomolar concentrations [52]. In contrast, T20, 
which was the first virus entry inhibitor approved by the 
FDA for clinical use (except Igs), can inhibit HIV-1 infections 
much more efficiently. The underlying mechanism of these 
differences is unknown, but could be related to the different 
pathways of entry of these two viruses, endocytosis (SCV) 
and entry at the cytoplasmic membrane (HIV). However, we 
recently found that one of the CP peptides can efficiently 
inhibit cell fusion with an IC50 value of only 20 nM; the IC50 
of the same peptide for infectious virus was in the 
micromolar range [X Xiao, CC Broder, DS Dimitrov, 
unpublished data]. The dominant mechanism of SCV spread 
in vivo is unknown and, therefore, the relevance of inhibiting 
cell-free virus entry to in vivo efficacy, versus cell fusion in 
vitro, remains to be elucidated. We have also expressed and 
purified full-size S2 fused to Fc [MY Zhang, DS Dimitrov, 
unpublished data]. Interestingly, S2-Fc is a monomer and 
remains soluble in phosphate buffered solution. It remains 
to be seen whether this full-size S2 fusion protein can 
efficiently block SCV entry into host cells.  
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In general, it appears that of all the entry inhibitors related 
to the S protein, hmAbs directed to the S protein are 
currently at the most advanced stage of development and 
offer the best hope as potential therapeutics. However, only 
further exploration of possible protein-based entry inhibitors 
and their evaluation in animal models would allow 
identification of the best candidates for clinical trials. 

Conclusions 
Human mAbs that neutralize SCV have been developed at 
an unprecedented speed, which is characteristic of SARS 
research in the last two years. These antibodies have 
potential for further development into a clinically useful 
product for prophylaxis and perhaps treatment of SCV 
infections. They are potent in the IgG1 form and the SCV 
infection is an acute infection that requires control of virus 
replication for relatively short periods of time, not to exceed 
a few weeks, after which the host immune system can clear 
the virus. In addition, these antibodies are cross-reactive, 
thus the problem of neutralization-resistant mutants able to 
evade their inhibitory activity and the immune response is 
not as significant as, for example, chronic infections caused 
by HIV. A note of caution is that careful examination of 
candidate antibody therapeutics is required due to the 
possibility of infection-enhancing effects and animal model-
dependent effects, as well as toxicity in some cases, although 
this is rare. A recent study reported for the first time the 
possibility that neutralizing antibodies can enhance the 
entry of SCV by a mechanism that involves antibody 
interactions with conformational epitopes in the S RBD 
[54•]. 
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